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Introduction

What is the leading order anomalous magnetic moment of the
muon a"'% and what precision can be reached from lattice
calculations?

The central quantity aZ’LO is accessible from the lattice by computing the
hadronic vacuum polarization (HVP) function M(Q?)

o= (2) [a@he@ m)(n(@)-n10)

In the following and the talks by V. Giilpers, H. Horch and G. Herdoiza,
we study different methods of obtaining (I'I(Q2) = I'I(O)) and discuss the

uncertainties arising from their respective systematics, as well as the
disconnected diagrams.
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Hadronic vacuum polarization

In phenomenology the hadronic vacuum polarization can be computed via

(@) -ne) =% [~ as FEL @

where R(s) x o(ete™ — hadrons)
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On the lattice both sides of (2) can be used to compute the HVP

» Lhs:
(n(Q2) - n(o)) — .

Extract the M(Q? > Qﬁ,tt)min(L,a)) by noting

nuu(Q) = (QHQV - (5;“,02)I'I(Q2)

where IM,,,(Q) is given in terms of the vector meson current-current
correlator (j,(x)j,(0))

M,(Q) = / d*x €9 (j,(x)j,(0))

> We refer to this approach as the "standard method”,

[0212018], [0608011], [1103.4818], [1011.5793]
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On the lattice both sides of (2) can be used to compute the HVP

» Rhs:: 02 - R(s)
s
-3 /0 dss(s + Q%)

Extract the difference M(Q?) — M(0) by noting
R(s) = 127%p(s)

where p(s) is the spectral function of the vector meson
current-current correlator (j,(x)j,(0))

G(xo, k) "= /d3x e’kX(J (x0, X) / dsv/sp(s)K(s, x0)-
One finds:

I'I(Q2)_|'|(0)_/OoodX0G(xo)[§ &sm (%on)

» We refer to this approach as the " mixed representation method”,

[1305.5878], [1306.2532]
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Caveats of the current methods

(n(QZ) - r|(0)) - %2 /00o dsS(R(S)

s+ Q?)
(oo}
Q%> Q2;,) —N(Q* = 0) = ... = / dxG(x0) K (x0, Q%)
0

Lhs: Forming in the standard Rhs: Integrating using the mixed
method (I'I(Q2) - I'I(O)) and af/t? rep. method for (I'I(Qz) - I'I(O))
note ... and a//*© note ...

> ... lattice data is not available

» ... the correlator has to be

at M1(0) known for all times t — oo

> ... extrapolation from Q* =0 > ... lattice data has to

2 ()2 ; : .

to Q_min = min(Qp (L, a)) is extrapolated to its asymptotic
required behavior

> . aZ’LO depends crucially on > aﬁ’LO depends crucially on
precise data/interpolation at precise knowledge of the
low Q2

correlator/spectrum

A. Francis Chiral behaviour of (g-2) from STDM and MRM



HLO

Towards a precision determination of a

Both the standard and the mixed rep. method rely on the same
data and ultimately process/display equivalent information.

However, what is low Q> — 0 in one is large Euclidean times
t — oo in the other. Can we use this to our advantage?

Ad-/disadvantages of the standard method — talks at this conference.

In the mixed rep. method the key observable, G(xo, k= 0), ...

> ... has a well established machinery to study signal/noise behavior
and finite size/mass/lattice spacing effects.

> ... can draw on a large body of experience/methods to
systematically improve the results.

> ... enables a systematic study of the spectrum of QCD.

> ... opens the possibility of a straight forward inclusion of the
disconnected diagrams (see talk by V. Giilpers).
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What advantages can we expect to exploit?

> The results for G(xp, k= 0) can be extracted at runtime from a
program computing M(Q?) at negligble cost.

» The difference of the standard method and mixed rep. method can
be monitored

Nso(Q%) — (M(@*) -~ N()) = M(0) 3)

MRM

iff both analysis are in fact equivalent,

» difference should be approx. constant
> gives a measure of I(0)

» The different systematics should become visible in quantities like (3)
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HLO

Towards chiral behaviour of a;

HLO

. at fixed lattice spacing

> We explore the chiral behaviour of a
a=0.063 and 5 =5.30

lattice Lfm] m; [MeV] mzl Npeas(Neons) Label

64 x 3235 20 451 47 4000(1000)  E5
96 x 483 3.0 324 50  1200(300) F6
96 x 483 3.0 277 42 1000(250) F7
128 x 643 4.0 190 40  820(205) G8

> All ensembles were generated within the CLS effort with two flavors
of O(a) improved Wilson-Clover fermions

» Correlation functions for strange and charm (not shown here) quark
masses are available as quenched, valence observables
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Standard method
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Mixed rep. method
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The extrapolation of G(x;) depends on the low mass spectrum

> We assume a single ground-state exponential contributes beyond
xo ~ 1.2fm (approx. xp/a ~ 18 —20)

» Further contributions cannot be excluded/included from the current data

» We use smeared-smeared interpolating operators in the light case
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Comparing both methods
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> The difference Ms7o(Q%) — (N(Q2) - n(O))MRM shows an
almost constant behavior

» In principle M(0) can be extracted from the difference ...

> ... here we will extract 1(0) for the standard method from Padé-fit
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The anomalous magnetic moment of the muon for Ny = 2
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The anomalous magnetic moment of the muon for N =2 + 1q
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Overview
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» We extended our analysis of the standard method to m, = 190MeV

» We explored the chiral behavior of a

» We included the mixed rep. method and compared systematically
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Overview
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» The standard method and the MRM are seen to be highly compatible

» The MRM gives a new handle to study the systematic effects and

their induced errors on al'jLO

> In the future, we will give an estimate of a at the physical point
including also disconnected diagrams (see talk by V. Giilpers)
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